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Now...
Profit

Hotel/
Ccustomers

(Prices, Rules)



.. In the future
Profit

1

Model via ML Intelligent
Simulator Optimization

1

(Prices, Rules




RM is an old field...BUT

If one uses traditional Mathematical
Programming/Optimization...

« Specific (often unrealistic) assumptions (e.g. linear
price elasticity of demand)

- More flexibility

« Exploding CPU times (e.g. dynamic programming)
- Intelligent optimization heuristics

« Multiple-objectives (e.g. short-term vs long-term)

- Opportunities for (machine) learning the correct function
to be optimized (not only short-term profit) 5



E.g., assumption that
customers respond in
a linear manner to
prices not always true!
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Imagine you drop the
priceto 1,000 CHF
Probably customers
think it Is a fraud and
do not buy!!



What changed from the seventies?
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Big data or small data?

(consider a single medium-size hotel)




Blg data Or Sma” dat Let’s not exaggerate...Data

of a single hotel are not big
(single medium-size hotel) data if properly filtered!

You can easily put in your
pocket data about all Swiss
hotels.
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ML + Simulation + Optimization

The real power
for innovation in
Revenue
Management
comes from the
combination

10



Note:
experiments

are not passive
but designed
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What’s behind

« Use data to build models and extract knowledge

Machine learning or learning from data

. exploit knowledge to automate the discovery
of Improving solutions

Optimization (automated problem solving)

« connect insight to decisions and actions.

Prescriptive analytics (much more than Bl)



A “zip” of the history of Al - NN - ML

Symbolic Al

(up to 1985)

Symbols

Logic

Expert systems
Explicit symbolic
programming
Inference, search
algorithms

Al programming
languages
Rules, Ontologies,
Plans, Goals...

Syb-symbolic

Neural nets

Knowledge in
parameters
Dynamical
systems

Neural Nets /
Backprop
Bayesian learning
Deep learning
Connectionism

Statistics/Machine

learning. Deep
learning...
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Learning from Data and Machine Learning

If you show a picture to a three-year-old and ask if there is a tree in it, you will
likely get the correct answer. If you ask a thirty-vear-old what the definition
of a tree is, vou will likely get an inconclusive answer. We didn’t learn what
a tree 1s by studying the mathematical definition of trees. We learned it by

looking at trees. In other words, we learned from ‘data’. Yaser Abu-Mostafa



A zip of the history of Al - NN - ML

Symbolic Al Syb-symbolic Statistics/Machine
learning. Deep

(up to 1985) Neural nets learning...

Eas?er to debug More robust against noise

Easier to explain Faster (from inputs to outputs)

Easier to control Less knowledge upfront

Not so Data-based Easier to scale up

More useful for explaining Data-based

people’s thought More useful for connecting to

Better for abstract neuroscience

problems Better for perceptual

Fragile problems

Needs knowledge elicitation 5

Curse of dimensionality



Why do we need models? Why surrogates?

Three ways of building models

[T
-4 .

Output Buy or not

Room type and
characteristics
Price

Context
Advertisement —

Input




1) Explicit exact and rigid models

Profit = Revenue - Cost

1

]

(Revenue, Cost)

e.g., Physics: Boyless law:

"For a fixed mass of gas, at a constant
temperature, the product (pressure x volume)
/s a constant,"

PV=NkT

Why do we need other models?




2) Parametric, with statistics

Quantity demanded

' Ronald Fisher in 1913

Price elasticity of demand =

Proportionate change in quantity demanded _
Proportionate change in price

x 100%

“[Zlol3
~[2lol

x 100%

' e.g.,, Maximum likelihood estimation

Price Is this related to Machine Learning?




3) Non-parametric models,
neural nets, modern ML (o60++, 1985, 2010)

Recommendation

1

Eduardo Caianiello, 1961

vl <
veves [0 [@[ 0] ==-==- ]
wove (@[ [o] ===--- @]
Nk A\
Very flexible, no rules elicitation,
Only need abundant (relevant) data

(Movie, Viewer)



ML:Solving problems withour explicit
programming and rules... is it about
laziness?

BiLr GATES SAYS :

I wiL ALWAYS CHOOSE A LAZY PERSON
To po A DirricuLt JoB ...

BECAUSE, HE wiLL FIND AN EASY
WAY 10 DO IT.




It IS about robustness!

No self-driving mountain bike yet! 21



It is about flexibility!




Different models are appropriate for

differeﬁnt contexts

| “ f{ _
.g T 30K
LEEIE

Cost
model

Purchase probability

A

Expected quarterly profit

50
Unit price

Purchase
probability

23



The dream

"give computers the ability to learn without being
explicitly programmed" ( , 1959).

The Tool

Weights of the flexible model are determined
via optimization, but aiming at
generalization (learning iIs mean not end)

No need to be an expert of the specific
business to Improve businesses


https://en.wikipedia.org/wiki/Arthur_Samuel

Is it possible? Neural networks!
...but airplanes do not flap their wings

e '&3N &\\ - -
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NN

Quegli che pigliavano per altore altro che la natura, maestra de' maestri, s'affaticavano invano.
(Leonardo Da Vinci)



The biological metaphor

We are the living proof of learning from data

« Our neural system is composed of 100 billion
computing units (neurons) and 10*° connections
(synapses).

« How can a system composed of many simple
Interconnected units give rise to highly complex
activities?

« Emergence: complex systems arise out of a
multiplicity of relatively simple interacting units.

Emergence is very present in Physics!
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Drawings of cortical lamination by Santiago Ramon y Cajal, each showing a vertical
cross-section, with the surface of the cortex at the top. The different stains show the
cell bodies of neurons and the dendrites and axons of a random subset of neurons.



Biological motivations

t} Dendrites, ° Microtubule ___

I.' Meurofibils
Meurotransmitte

Synaptic vesicles
Synapse (Axoaxonicky )

T
Synaptic cleft I
Axanal terminal /

Rough ER
(Mizs| bodyl

Polyribosomes Node of Ranvier
Ribosomes

Golgl apparatus

Myalin Sheath
(Schwann call)

Mucleus — Ri
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Neurons and synapses in the human brain

...but airplanes do not flap their wings, we are welcome to use
different algorithms and hardware



Artificial Neural Networks

A neuron is modeled as a simple computing o,
unit, a scalar product w x (“pattern matching”) | X
followed by a sigmoidal (“logistic™) function. “

« The complexity comes from having more
Interconnected layers of neurons involved in a
complex action

« The "squashing” functions is essential to

iIntroduce nonlinearities in the system A neuron is
like a keyhole

opened by a
specific key
(input signals)



MLP architecture

. a large number of interconnected units working
In parallel and organized in layers with a
feedforward information flow.

fast “no reasoning Scalar products “grandmother neurons”

Simple pattern matching, “key” — “keyhole”

out

Squashing function



What Is (machine) learning?

It's a kind of magic?

« Learning is more than memorizing («learning by
neart»)

« Unifying/compressing different cases by
discovering the underlying explanatory laws.

« Learning from examples is only a means to
reach the real goal: generalization, the
capabllity of explaining new cases



How to learn:
Supervised machine learning

a «teacher» Is giving labeled examples

X1 Internal
parameters
X2 S
. of the
_ : classifier
Accommodation offer Tourist buys or not



Learning from labeled examples:
minimization and generalization

« Aflexible model f(x;w), where the flexibility Is
given by some tunable parameters (or
weights) w

» determination of the best parameters is fully
automated, this is why the method is called
machine learning after all



Learning from labeled examples:
minimization and generalization (2)

. fix the free parameters by demanding that the learned
model works (approximately) correctly on the examples
in the training set. B

« power of optimization:

~ 1. define an error measure to be minimized,

- 2. determine optimal parameters via
(automated) optimization

full clarity about the objective




Learning from labeled examples:
minimization and generalization (3)

« Suitable error measure iIs the sum of the errors
between the correct answer (given by the example
label) and the outcome predicted

. If the function iIs smooth one can discover points of

low altitude by being blindfolded and parachuted to
a random initial point...

(gradient descent)



Gradient
descent is
like skiing
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J(84,9,)

Gradient descent

...and these are the
parameters you can change

Imagine the
altitude is your
error during
training...




Learn, validate, test!

Warning:
terrible
mistakes ahead
If method is not
clear

VALIDAT|ON
-r;él-'l!l N SET



Deep Learning

Embed domain
knowledge so
hat learning
becomes easier

Feature detectors in a frog retina (Bufo Bufo) are hard-wired and specialized to
detect a fly at the distance that the frog could strike.



Intelligent Optimization



Optimization

Minimum_ X f(X)
(or maximum)

Optimization scares
people. They think it

Is too math-oriented
to be understood.
But its power is
truly enormous...

X are the parameters you can
change (e.g., prices)
f(X) is the result (e.qg., the profit)

43



A practical view of a «function»

X: Input
ingredients

f(x): Profit

1

]

X: (Price, Rules)

f(x) : output




Profit

1

Model via ML Intelligent
Simulator Optimization

]

(Prices, Rules)




Example: determine the best price

_’ | Bl =

o Profit = price paid — costs VAl

« Probability of accepting offer

 Actual profit is multiplication of the two factors

Unknown: learn from data!

Prob. JL
that custg

accepts

» After (machine) learning... optimize!



How many problems can you solve
exactly in reasonable computing
times?

Not many ®

How many solutions can you
Improve with intelligent
optimization?

Most (all?) of them ©

47



LP
Linear
Programming

mmunition-
Dont waste it

UniTeED STAaTES FOOD ADMINISTRATION




Quadratic Programming:
how to find the minimum

Very relevant for RM:
Revenue = price x reservations
Reservations = c price
Revenue = ¢ x price”2

B One sees it...

Try many (X,y)
values...

Which values?
All possible vals?

“Local steps”

Figure 18.6: Quadratic positive definite f of two variables.



Two (very different) paradigmatic
methods
Optimization is a very old topic... ‘ \

Operations research

Paradigms:

1 Stochastic global optimization (memory-less,
“brute force”, but very robust)

2 Local Search and Reactive Search
Optimization (use learning while optimizing)

50



Paradigml: Stochastic Global
Optimization




Stochastic Global Optimization

« black-box interface: the algorithm can query the
value f(x) for a sample point x, but it cannot “look
inside” f

« Separation of concerns: to be as generally applicable

as possible, optimization routines do not need to know
anything about the application domain;

« @ computer scientist can improve profits for hotels or
Improve survivability of patients cured for cancer
without any knowledge of economics or medicine.

Ignorance can bring value



Black-box optimization




Stochastic Global Optimization

just function evaluations

function of continuous (real) variables

one can decio
one can use't

e where to place sample points, and
ne information obtained to build

Internal mode

s of the function and tune its own

meta-parameters.

stochasticity in the generation of sample points
helps to improve robustness and avoid that some
false initial assumptions lead to low-quality local

optima



Convergence Rate of Pure Random Search
« Success with probability (1 —v)

. In the asymptotic behavior when d is fixed and

«— 0 ,number of iteration for success , _, (1)

o Curse of dimensionality

d v = 0.1 v = 0.05

e=05] =02 e=01=05] =02 2=0.1
1 0 5 11 0 6 14
2 2 18 73 2 23 04
3 4 68 5490 5 88 714
4 7 201 1665 9 378 6070
5 13 1366 43743 17 1788 56911
7 62| 38073| 4.9-10° 80| 49534 6.3-10°
10 024 8.8.10° 9.0-10°| 1202| 1.1-107] 1.2.10%°
20| 9.4-107| 8.5-10'| 8.9-10%!| 1.2-10%| 1.1-10'¢| 1.2-10??
50 |1.5-10%%] 1.2-10*%| 1.3-10%%|1.9-10%%| 1.5-10*%| 1.7-10%°
100/1.2-107%|7.7-10'°7|9.7-10'%9|1.6-107°|1.0-10'19|1.3-104°

cd

:f

Table 2.1. Values of n, = n.(v,¢,d), see (2.22), for vol(A) = 1, v = 0.1 and 0.05,
£=10.5,0.2 and 0.1, for various d.



Curse of dimensionality

"Abandon all hope, you who enter here”. If dimension is
large there is no magic algorithm to rapidly
approximate the global optimum for a generic
function in less than exponential number of
iterations.

There are just too many places to hide in d dimensions.

Hope is related to functions with special forms, so
that regularities can be learnt from an initial sampling,
albeit in approximated form, and used to identify
shortcuts leading rapidly to close approximations of the
optimal solution (learning x optimization)

Chance that we encounter highly-structured functions in
real applications? Not negligible. Nature does not play
dice...



Problem structure Is helping us

57



Paradigm?2: Local Search and Reactive
Search Optimization (RSO)

) T
/

\
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o



Reactive Search Optimization

More detalls In:

Battitl, R., Brunato, M. and Mascia, F., 2008. Reactive
search and intelligent optimization (Vol. 45). Springer
Science & Business Media.

59



Local search based on perturbations

 Drute force is not always the solution

1) start from an initial tentative solution

2) try to improve it through repeated small
changes

3) stop when no improving local change exists

(local optimum, or locally optimal point)



Modifications of local search based on
perturbations

o local search by small perturbations is an
effective techniqgue but additional ingredients
are in certain cases needed to obtain superior

results



RSO “bike”

Local search
“bike”

"It Is a good morning exercise for a research scientist to
discard a pet hypothesis every day before breakfast: it
keeps him young" (Konrad Lorenz, 1903-1989).



Reactive Search Optimization (RSO):
Learning while searching

. Many problem-solving methods are characterized
oy a certain number of choices and free
parameters, usually manually tuned.

. Parameter tuning can be automated as a part of
the optimization algorithm

« This leads to self-contained, fully automated
algorithms, independent from human intervention

Reactive Search Optimization (RSO) integrates
online machine learning technigues and search
heuristics for solving complex optimization problems.



Reactive Search Optimization

Integration of online machine learning
techniques for local search heuristics.

The word reactive hints at a ready response
to events during the search through an
iInternal online feedback loop for the self-
tuning of critical parameters.

Biological systems are highly adaptive; they use signals
coming in from receptors and sensors to fine-tune their functioning.
Adaptivity is a facet of the reactivity of such systems.

64




Disruptive innovation by
combining ML + simulation + IO



Optimization: a tremendous power

Tapping and musik

o Still largely unexploited in most real-world contexts:
standard optimization assumes affunction f(x)| to be
minimized, ...and math knowledge.

 function f(x) (a.k.a “model”) helps people to concentrate
on goals/objectives, not on algorithms (on policies not
ONn processes)

« BUT static f(x) does not exist in explicit form or Is
extremely difficult and costly to build by hand, and math
knowledge is scarce. Try asking an hotel manager

66



Real word is dirty (black?)

Some posivite objectives (MOOP)
Combination not clear

Hidden objectives L@@ [f[m Q

Dynamic aspirations

No math formula

Maybe some

high-level L@@Wm Q
knowledge

and intuition

Many inputs, L@@[ﬁm Q

noisy,
some irrelevant

Machine Learning :




If f(x) not given? Learn what to optimize

Example: MOP: Finding a partner: intelligence versus beauty
How many IQ points for one less beauty point?
Is beauty more important than intelligence for you? By how much?

Effective optimization
as iterative process with learning -



Pareto-optimality

Price Difficult

Compromises !

intelligence

Quality
Figure 41.3: Pareto optimality. All dominated points like the persons in the middle
are not considered as potential candidates for the final choice. On the Pareto frontier, 69
shown with a dashed line. tradeoffs need to be considered.



Flexible and interactive decision
support and problem solving

Crucial decisions depend on factors and priorities
which are not always easy to describe before.

Feedback from the user in the exploration phase!

+ Machine L%




An example: Combining Intelligent
Optimization with Simulators in Hotel RM

More detalls In:

Brunato, Mauro and Battiti, Roberto

"Combining intelligent heuristics with simulators in hotel revenue
management”

Annals of Mathematics and Artificial Intelligence", 2019",
Issn="1573-7470",doi="10.1007/s10472-019-09651-9",
url="https://doi.org/10.1007/s10472-019-09651-9"}

71


https://link.springer.com/article/10.1007/s10472-019-09651-9

Combining Intelligent Optimization with
Simulators in Hotel RM

o resorting to heuristics does not imply
abandoning experimental science (e.g.,
training vs validation vs test)

« Real experiments in hotels can be difficult (and
slow)

« Massive experiments are now made possible
by fast hotel simulators which can be trained
on the hotel data to simulate the hotel
reservation process

There is another area in which experimentation with the real thing is difficult.... 2



Monte Carlo method

(invented in the late 1940s by Stanislaw Ulam)



https://en.wikipedia.org/wiki/Stanislaw_Ulam

HotelSimu: a general-purpose
simulator for hotels

———————————————————————————

, optimized pricing policy

%

resen.

1
|
:
request Dynamic Acceptance :
pricing probability :
i N model model |
1
Event current state :
1
generator accepted :
serv,
N

cancell, Hotel
registry

total revenue

<6/ccf k 5 Tme {

Figure 2: HotelSimu overview. Reservation requests and cancellations are interspersed. The
state of the hotel after one complete simulation is used by the optimizer to compute the total
revenue and adjust the pricing policy.
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Generative model of requests

304
251
a .
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Fig. 2 Reservation generator time-varying parameters. Top: expected requests per day. Below, clockwise:
expected kength of stay, mean advance with respect to check-in date, expected size for group reservations
{more than one room), probability of group reservations. Parameters adapted from historical data from some
Northern Italian hotels.
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Pricing policies
. Median acceptance price — “Const median”

i = Il - acceptance probability is always 0.5

. Unsaturated equilibrium price — "Const
equilibrium”

U maximizes the expected revenue on the
hypothesis that there is an infinite supply of

rooms
u'=argmaxu-pg(u)=n (l +Woh ({J}T_])) .
uc

where Wy (-) is the main branch of Lambert’s W function. "



Pricing policies (2)

« Pickup-based dynamic price — “Dynamic’

- Res one-day and independent, competing for the
same check-in date, time discretization

« Best constant price — “Const Grid search”

- determined by a grid search on a training set of
reservations for the price that maximizes the hotel’s
revenue.

« Factored pricing — “Factored”

f1 is a 2-piecewise linear function of the time to arrival which can
accommodate for independent early and last-minute discounts or
penalties, while the next three linearly depend on group size,

length of stay and residual capacity at the time of reservation. *



Intelligent optimization heuristcs

« CMA-ES — An evolutionary optimization algorithm
based on covariance matrix estimation

« Affine Shaker —Local search-based optimization
method founded on the Collaborative Reactive

« Cooperative Reactive Search Optimization
(CoRSO) framework particularly fit to low-
dimensional search spaces.

« Inertial Shaker — An alternative to the latter; less
computation-intensive and therefore fit to higher-
dimensional search spaces

79
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Conclusions

« In complex contexts, the simplifying assumptions
that make the Dynamic Programming policy
solvable (e.qg., reservations in different days do not
Interfere) are too restrictive, and the policy does not
achieve good results.

« Parametric pricing policies meaningfully improve
the revenue, particularly in the saturated case. The
reactive optimizers show a consistently good
performance

82



Conclusions

« Flexibility: by combining ML models with
optimization, one can make arbitrary changes in
the model of demand and customer behavior without
Impacting the way the optimization algorithm functions.

« We are in 2020, not in 1950.

We can solve/improve problems like complex
Revenue Management situations which were
Impossible in the last century ©
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Our recipe for
more effective
_ RM “cooking”

Thanx!

[ M Ciaomanager is ready with a RM system (Sinapsi) following the presented ideas85 J



mailto:Roberto.Battiti@unitn.it
https://www.ciaomanager.com/en/sinapsi/

